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1. Introduction

Until recently, differential equations was taught as an extension of integral
calculus, with the focus on solving particular classes or systems of ordinary
(scalar-valued) equations. The typical undergraduate curriculum was devoted
to substitutions with the trigonometric functions, the Laplace transform, and
other methods of obtaining explicit solutions. For many nonmathematicians,
these recipes of solution techniques were quickly filed away and forgotten.

The modern approach, beginning with the work of the French mathemati-
cian Henri Poincaré in the late 19th century, has concentrated on qualitative
properties of large classes of equations, linear and nonlinear. Poincaré
initiated the topological approach to dynamic systems. His insight was that
the ordinary differential equation

dx/di=%=f(x,1) (1)

could be studied from a geometric point of view in the %, x phase plane with
the solution, ¢, (x,, ), being an orbit or trajectory parameterized by time, f,
given an initial condition x.

*Book review of Differential Equations, Stability and Chaos in Dynamic Economics by W.A.
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Fig. 1. Poincaré-Bendixson limit cycle.

For the two-dimensional case, Poincaré and Bendixson proved the exis-
tence of the limit cycle or closed orbit. With enough smoothness' to guaran-
tee uniqueness, the Poincaré—Bendixson theorem can be seen geometrically?
with reference to fig. 1. Consider the trajectory from P, to P, to Pi.
Uniqueness ensures that the trajectory never crosses itself. Now consider a
line segment of points connecting P;, P,, and P;. These points form a
Jordan curve which bisects the plane; the trajectory must always strike the
segment from one direction. Clearly then, the orbit must continue to spiral
inward. Bendixson was able to provide criteria to rule out the erratic
dynamics. Peixoto (1962) completely classified the taxonomy of behavior for
two-dimensional flows.

Steve Smale, a Field’s medal winner now at Berkeley, conjectured that
even in higher-dimensional systems there would be a finite number of closed
orbits.® Smale was persuaded by a counterexample shown to him by Levison*
that his conjecture was wrong. Smale then began work on his horseshoe
example, culminating in his seminal ‘Differentiable Dynamical Systems’
[Smale (1967)). The horseshoe was, Smale has written, ‘the first structurally
stable dynamical system with an infinite number of periodic solutions’. In this

1t is sufficient that f be Lipschitz. The proof is due to Cauchy and Peano.
I draw heavily here on Coddington and Levinson (1955).
*The conjecture can be found in Smale (1960).

#Smale’s own account of the conjecture can be found in the essay in Smale (1980): ‘How I Got
Started in Dynamical Systems’.
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abstract example much of the new dynamics, unfortunately labelled as
‘chaos’, was born.

Guided by Smale and several mathematicians of the Soviet school,® the
study of dynamics has adopted a global approach. The object of interest is a
flow defined on some subset of Euclidean space or a differentiable manifold.
Properties such as stability and uniqueness can then be deduced, even when
explicit solutions are not known. The limiting behavior of flows can also be
studied probabilistically. If the trajectories are defined on a metric space,
ergodic theory studies the transformations that preserve measure.® This is a
rapidly evolving field that I return to in section 4.

The book reviewed here, by William A. Brock of the University of
Wisconsin at Madison and A.G. Malliaris of Loyola University of Chicago,
follows a hybrid approach, incorporating some of the older methods with the
new. The first part of my remarks is devoted to the classical material on
solving differential equations and analysis of stability. The next section looks
at the economic applications. Section 4 is devoted to chaotic dynamics. These
roughly follow the book’s chronology.

2. Reference material on differential equations

The first two chapters contain standard reference material on differential
equations. The authors present the existence theorem of Cauchy and Peano
and then establish existence and uniqueness of the method of successive
approximations under weak assumptions. For linear differential equations,
the focus is, not surprisingly, on explicit solutions. The general nth-order
linear system is examined in great detail. The Jordan canonical form, used
later in the stability analysis, is also presented.

Chapters 3 and 4 are astwo-step introduction to stability analysis. The
linear theory is developed in Chapter 3 and used to prove local stability for
nonlinear systems, and asymptotic stability for perturbed systems. A brief
digression on geometrical approaches is pursued towards the end of the
chapter. Chapter 4 develops Liapunov’s direct method. This chapter contains
difficult material, and the authors wisely present numerous examples. I found
the application of Liapunov’'s method to the growth method to be particularly
instructive.

Brock and Malliaris develop in the last half of Chapter 4 some topological
notions to study global asymptotic stability (g.a.s.). A dynamical system is said
to be g.a.s. if the trajectories tend to a fixed point in the limit for all initial

“Don Saari has informed me that a paper by Sitnikov (1960) on the three-body problem was
highly influential among Soviet mathematicians.

5This is the motivation of the classic work by Sinai (1969).
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conditions. Fixed points are in what is called the w-limit set’ on a differential
equation. A related concept is the nonwandering set which includes all points
within a specified distance of recurrent trajectories.® Fixed points and limit
cycles are in the nonwandering set.

Brock and Malliaris proceed with a sequence of theorems establishing
g.a.s. under a variety of regularity conditions. Unfortunately, as Boldrin and
Montrucchio (1986) note, stability theorems for concave programming prob-
lems depend crucially upon the rate of discounting, unless strong conditions
are imposed. The theorems of Cass and Shell (1976), Rockafellar (1976), and
Brock and Scheinkman (1976), developed in Chapter 4, all require the
planner to be quite ‘patient’ for g.a.s. to hold. Absent a large discount factor,
the nonwandering set can include virtually any type of dynamical behavior,
including chaotic attractors.

I was somewhat disappointed that there was not even a brief development
of bifurcation theory in this section. Bifurcation refers to critical parameter
values at which a differential equation loses stability. Consider a family of
differential equations,

i=f(x), x€R", peRk, (2)

parameterized by u. A solution to (2) is given by f,(x) =0. Guckenheimer
and Holmes (1983) note that as p varies the equilibria are described by
smooth functions of u away from those points of the Jacobian with zero
eigenvalue. At an equilibrium (x,,x,) with zero eigenvalue, branches of
equilibria come together, making (x,, ) a point of bifurcation.

A prototypical example is the so-called pitchfork bifurcation in fig. 2.
Consider the equation

X=px—x°, (3)

which has fixed points at x=0 and x= + \/; . Evaluating the Jacobian at
x =0, one sees that x =0 is unstable for positive . From the bifurcation
diagram, we see that stability is transferred to the points x = + \[;

To gain a more precise understanding of how dynamical systems produce
seemingly random behavior, we must delve more deeply into bifurcation
theory. Let us introduce the invariant set S, a subset of R", on which the flow

"The w-limit set is the limit set of forward orbits. The backward orbits are in the a-limit set.
See Brock and Malliaris, p. 114.

8A point p is called nonwandering for the flow ¢ (x) if for any neighborhood U of p there
exists arbitrarily large ¢ such that ¢,(U) N U # @. See Guckenheimer and Holmes (1983, p. 33).
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Fig. 2. Pitchfork bifurcation.

remains over time:
ScR"={¢,(x) €S,YxS, t€R}. (4)

The invariant set includes both the local stable and unstable manifolds
associated with a fixed points x:

We(x) = {x € Ulp,(x) —»Xast—o, ¢ (x)€U,Vt20}, (5a)

Wie(%) ={x€ L}Ici:,(x) —»Xast— —»,¢,(x) €U,V =<0},
(5b)

where U C R" is some neighborhood of .

Assume for expository purposes we are in R* Consider a diffeomorphism®
f: R* > R?, with a compact invariant set. Let ¥ = (0,0) be a hyperbolic fixed
point. This means that the linearized system has no eigenvalues of zero real
part, enabling us to determine stability directly. Suppose that the Jacobian
consists of one stable and one unstable root, 0 <[|A;| <1 and [A,|> 1. With
reference to fig. 3, let p be the unique intersection of the stable and unstable

’A smooth mapping that is both one-to-one and onto and whose inverse is also smooth. This
can be thought of as a Poincaré map of a higher-dimensional differential equation.
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Fig. 3. Transverse intersection of stable and unstable manifolds.

manifolds. In a neighborhood of p, the dynamics of the diffeomorphism will
resemble Smale’s horseshoe.

Geometrically, the horseshoe involves a stretching and folding of topologi-
cal space. Consider the unit square S =[0,1] X[0,1] and define a mapping
f: 8§ = R?, which contracts the unit square horizontally by A, and expands it
vertically by A,. You then fold the long thin strip as in fig. 4(ii). This produces
two vertical bands V; and V/, in the unit square. The pre-image f~ S NF(S))
consists of two horizontal strips, H, and H,, as in fig. 4(iii). Repeating this
transformation, S N f(S) N £2(S) produces, as in fig. 4(iv), four rectangles by
removing the nonshaded segments in fig. 4(ii). We readily see that A =
{x|f'(x)ES—x<t<mx} is a Cantor set.'” Smale has shown that A is
invariant under f and it is topologically equivalent to a Markov partition'' of
the neighborhood.

The horseshoe is the mathematical idealization of the erratic behavior near
where stable and unstable trajectories meet.'> Points that are initially near
one another are separated by the expansion and contraction of S. While an
invariant set gains stability in the horseshoe, the set is not an attractor. We

%This construction is identical to the classic Cantor set produced on [0,1] by removing the
middle third each time.

"One can divide the neighborhood of the intersection of the stable and unstable manifolds
into horizontal and vertical rectangles and assign symbols to each. The trajectory will trace out a
sequence of symbols as it moves from region to region. The symbol sequence describes a Markov
partition.

">The point of intersection is called a homoclinic point. The class of Axiom A dynamical
systems, which includes the horseshoe, satisfy two conditions: (i) the invariant set § is hyper-
bolic, and (ii) fixed points and periodic orbits are dense in S.
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Fig. 4. The Smale horseshoe.

return to this topic in section 4. Excellent references on this material are the
books by Palis and de Melo (1982), Guckenheimer and Holmes (1983), and
Ruelle (1989). I have drawn freely on all of these in this section.

3. Economic applications .

There are five chapters devoted directly to economic applications. Com-
bined with the economic examples in the reference chapters, there is a
wealth of material for the applied worker. These chapters should become
part of the canon in economic theory.

Chapter 5 is devoted to the optimal control problem and is concerned with
isolating sufficient conditions on the Hamiltonian of the control problem for
global asymptotic stability. As all of the conditions require concavity of the
Hamiltonian in the state and control, Brock and Malliaris take up the topic
of increasing returns in Chapter 6. Since much of the revival in growth theory
has focused on the importance of increasing returns,” this is a welcome
addition to the literature. My enthusiasm is tempered by the authors’ choice
of studying the increasing returns in the context of the two-sector growth

HSee, e.g., the work of Romer (1986).
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model. 1 found the short digression on optimal one-sector growth with
convex—concave technology (increasing returns over only some range of the
state variable) to be the most useful. Chapter 9 extends the earlier results on
the control problem to a multi-sector model.

Chapters 7 and 8 are considerably less abstract than their two predeces-
sors. Chapter 7 is devoted to the classic problem of investment theory. It is
essentially an extended application of the theorems in Chapter 5 to various
formulations of the investment problem, including the widely studied adjust-
ment cost model.

Macroeconomics is treated in Chapter 8. The authors develop a represen-
tative household model with consumption, labor supply, government expendi-
ture, and money balances in the utility function. There are 22 variables in
total, but, in return, Brock and Malliaris integrate results on optimal con-
sumption and investment in a model with a more detailed modelling of the
corporate sector. The model is distinguished from the Lucas (1978) ‘tree’
economy by incorporating production and labor supply, and differentiating
between physical and financial capital.

The chapter has two weaknesses in my view. Brock and Malliaris fail to
link the problem of indeterminacy of equilibria in rational expectations
models with multiple equilibria in deterministic models. They also do not
devote sufficient attention to fluctuations which, in my view, is what distin-
guishes macroeconomics from growth theory. The burgeoning real business
cycle literature'* is devoted to calibrating stochastic variants of Brock and
Malliaris’ model to realized output fluctuations. Readers interested in
stochastically perturbed differential equations are referred to the earlier
book of Malliaris and Brock (1982).

4. Complex dynamics

There is only one chapter on chaotic dynamics in the book, and 1 warn the
reader that I am spending a disproportionate amount of time on this topic.
The leap to ergodic theory in this chapter, I felt, was too abrupt. Pedagogical
continuity would have been served by some development of abstract dynami-
cal systems on measure spaces as in Bhatia and Szego (1970) or Mane (1983).
This would also provide a link to the Markov theory, a useful step in a book
devoted almost exclusively to deterministic models.

I will provide some background for the reader that begins by defining some
ergodic invariants on an attractor. This motivates the statistical analysis of
nonlinear dynamics that consumes the bulk of Chapter 10. The economic
applications are reserved to a separate subsection.

“For a critical survey of the literature see McCallum (1986).
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4.1. Chaos: Ideas and definitions

If a dynamical system f: R" — R" possesses an attractor, A, a closed
indecomposable invariant set, to which nearby trajectories are mapped, we
can study the global long-run dynamics of an ensemble of orbits. There exists
on the attractor a unique, ergodic probability measure p, such that for
Lebesgue almost everywhere x in the basin of attraction of A

lim J/T):g fi(x)) fg(x)dp, (6)

where g: R” — R is any continuous function."® The existence of this ergodic
probability measure enables us to study a dynamical system probabilistically.
The time averages of the flows will reproduce p, for almost any initial x.

We will call an attractor, following Ruelle and Takens (1971), strange if it
possesses sensitive dependence on initial conditions. Sensitive dependence
refers to the property of exponential divergence of nearby trajectories that
we first observed in Smale’s horseshoe. As these systems evolve through time,
small discrepancies in the initial state become magnified, eventually becom-
ing distinct trajectories. Even if the system were known with complete
certainty, small measurement errors would limit your ability to predict into
the future.

Since the rates of expansion and contraction will vary along the trajectory,
we must analyze limiting time averages. Following Guckenheimer and Holmes
(1983), define by T, R" the set of all tangent vectors to R" at x € S, where §
is an invariant set. Assume that 7, can be decomposed into subspaces:
T,R"=E!®E® --- @ E". For the horseshoe, with n =2, E! and E? are
vertical and horizontal lines formed from the iterates of f: N7_,f'(S) and
NZ_of"(S). Since x in fig. 5 is a homoclinic point, vectors in E' (resp. E?)
are contracted exponentially in forward (backwards) time.

Let D denote the derivative function. Consider the limit

n

lim 1/¢||D, f'ull = A;, e o RS S (7
f—so0

for every u € E/, 1 <j <n, where ||+ || is the Euclidean norm. The spaces E!
are called the eigenspaces of f, and the A; are called the Liapunov expo-
nents. Oseledec (1968) proved that this limit exists for p almost everywhere
x. For n =1, the Jacobian is just a scalar at each ¢, and the theorem reverts
to the ordinary (nonmultiplicative) ergodic theorem. The Liapunov exponents

-
A similar limit will pertain for flows as well: lim; . |/Tfug{¢,(xn
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Fig. 5. Tangent vector decomposition.

tell us the average rate of expansion or contraction along the entire trajec-
tory.

The Liapunov exponents are also directly related to entropy, a property
generally associated with random, not deterministic systems. Before getting
into the technicalities, let’s begin an intuitive discussion of entropy. Consider
a six-sided die, and define the nonnegative quantity

6
H= - Epl log( pi’)’ (8)

i=1

where p, is the probability of the ith face appearing. assume p, = + for all i,
indicating a fair die. Entropy tells us the amount of randomness in an
experiment. We see from (8) that a fair die is more random than a loaded
one in which some faces come up more than others. A fair twelve-sided die is
more entropic than a six-sided one.

Introduce now an abstract probability space'® (£2, ¥, p) on which we can
define a dynamical system. {2 is the outcome space. For the dice, it can be
thought of as, say, all possible observed sequences in two rolls of the die:
N={(1,1),(1,2),...,(6,6)}. An event is some subset of points in 2. T is a
o-algebra of subsets of (2, closed under the formation of complements and
countable unions of events in £. p is a probability measure, a set function
assigning probability masses to the events in £, 0 <p(A4) <1, for A €%, and
p(2) = 1. The support of p is the smallest T-set A for which p(A4) = 1.

Following Eckmann and Ruelle (1985), let 4 =(A,,..., A4,) be a finite
partition of the support of p, a family of nonempty, disjoint sets that are
p-measurable. Each A, can be thought of as a single event in (2. Now, we

1%An excellent reference on this material is Dudley (1989).
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restate (8) as the entropy of the finite field A4:
H(A,p)=— Y p(A,)logp(4,). Q)
i=1

Denote by f~*4, the set of points mapped by f* to 4,, and let f*4 be the
partition (f~*4,,..., f*4,). Finally, define

AVD=AVvi Ay oo vfitiYg, (10)

which is the partition generated by A4 in a time interval of length ¢. The
entropy of the field A4 relative to f is given by

=l

h(A,f,p) = lim l/rH( V fa
i k=0

= lim 1/tH(A®, p). (11)
[—x

This measures the average uncertainty per unit of time about which element
A,; €A the orbit of a dynamical system will enter under time evolution. If f
were globally stable, the entropy would be zero. A final refinement shrinks
the diameter of the partitions to zero,

h(p)= lim h(A,f,p), (12)
d(A)—=0

yielding the measure theoretic entropy.
Pesin (1977) has shown that if f is C* and p is absolutely continuous with
respect to Lebesgue measure,

h(p) = LA;., ()

where A;, are the positive Liapunov exponents. For a dynamical system to
have positive entropy, it must have a highly erratic trajectory. This type of
nonwandering set requires the stretching and folding of topological space
implied by a positive Liapunov exponent.

4.2. Economic applications

The study of complex dynamics in economics has been pursued along two
lines. The first is a theoretical literature developing economic examples of
chaos. The second is an empirical literature analyzing time series data for
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evidence of chaotic dynamics. The middle third of the chapter is devoted to
chaos in macroeconomics, but it is here that I begin.

The existence of cycles in overlapping generations economies was first
demonstrated by Gale (1973). Simple examples of chaotic dynamics were
then presented in Stutzer (1980) and Benhabib and Day (1981). These papers
rely on the theorem of Li and Yorke (1975), which is in turn a special case of
the theorem of Sarkovskii (1964). A difference equation with a periodic
equilibrium of order three yields, for alternative parameterizations, equilibria
of any integer period. A set of aperiodic points also exists.

Grandmont (1985) provides the following illustrative example. Consider a
two-period overlapping generations model. The representative agent has
utility over consumption, c,, and leisure, /7,

Ul(e, .17, t=1,2, (14)

but he can expand labor effort, /,, to produce consumption goods. The choice
problem for the agent can be shown to depend solely on the relative money
prices of goods, 8 =p,.,/p,, which can be thought of as the real wage. A
simple way to depict this graphically is with an offer curve, as in fig. 6 where
the dynamics can be described as a difference equation in p, and p,,,. As 8
increases, there are both substitution and income effects on labor input. To
obtain periodic cycles, income effects must become dominant and make the
offer curve bend backward.!” In fig. 6, a three-cycle emerges, assuring us the
existence of complex dynamics. Grandmont has offered this work as an
alternative to the conventional framework that business cycle fluctuations are
driven by exogenous shocks.'®

In Arrow-Debreu economies, Sonnenschein (1972) proved that the class of
excess demand correspondences includes all smooth vector-valued functions
that satisfy Walras’ law. Saari (1985) then demonstrated chaotic behavior in
the adjustment of the equilibrium price vector. Models of the tatonnement
that depend only upon the first derivative of the excess demand correspon-
dence'? will fail to converge on an open set of initial prices. Furthermore, the
nonconvergent price sequence is uncountable, indicating highly random dy-
namics.

The genericity of complex dynamical phenomena is problematic for eco-
nomics. It seems counterintuitive that the optimal capital shock should
fluctuate randomly. While it is indeed a challenge to construct parametric

Azariadis and Guesnerie (1986) have noted that the very same conditions are sufficient for
the existence of sunspot equilibria.

8 This view is developed in Lucas (1987).

YNewton’s method is an example. This type of mechanism simply raises the price of
commodities in excess demand.
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Fig. 6. A cycle of period 3.

examples apart from a small class of well-understood maps®, the more
difficult work is finding conditions to limit the asymptotic behavior to simple
cases like fixed points. Some steps in this direction are in Boldrin and
Montrucchio (1990).

A second line of research has been empirical. The early work of Brock
(1986) sought confirmation of Grandmont’s view. The question was to distin-
guish between random and deterministic systems. According to a theorem of
Takens (1983), it is possible to construct a diffeomorphism of an attractor
from a scalar time series. The embedding preserves invariants of a dynamical
system, including dimension and entropy.

Dimension is a measure of complexity.?’ We want to know whether the
data-generating mechanism includes a large number of state variables. Ide-

2The logistic equation, x,,, = px,(1—x,), a popular model in the biological sciences for
modelling the ebb and flow of populations, has seen wide application. May (1976) showed that
this very simple map could generate very complicated dynamics. For continuous time systems, we
must look outside of the Poincaré—Bendixson plane for chaos. The climate equations of Lorenz
(1963), a three-state variable model, have played the role of the logistic equation for models of
flows.

*'An excellent intuitive discussion of dimension is in Farmer (1982), Topological dimension
coincides with our notion of Euclidean dimension. The capacity deals with the rate of growth of
a set that ‘covers’ the attractor. Information dimension is a probabilistic concept that tells us the
capacity of the more commonly visited regions of the attractor. The correlation dimension
bounds the information dimension from below, and the capacity bounds it from above.
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ally, we would like a measure that is general enough to handle Euclidean
notions of dimension as well as the more complicated fractal structures often
found with chaotic attractors. The physical sciences have settled on the
correlation dimension of Grassberger and Procaccia (1983) as an experimen-
tal benchmark. Chapter 10 develops the statistical theory underlying the
procedure and reports on empirical work applying the test to economic and
financial data.?

A finding of low dimension is necessary but not sufficient evidence for
chaos. Osborne and Provenzale (1989) have shown that certain stochastic
systems with power law spectra have finite correlation dimensions. Entropy
should be regarded as the defining characteristic; some evidence for positive
Liapunov exponents in stock returns can be found in Eckmann et al. (1988).

The empirical literature has turned away from the question of randomness
versus determinism, and refocused on the importance of nonlinearities. The
authors admit that they don’t really believe that a chaotic system is generat-
ing economic time series. Brock, in his work with Dechert and Scheinkman,
BDS (1987), has adapted the correlation integral as a test for nonlinear
dependence.

For economists, the real issue may be prediction. If the only thing we know
about the data-generating mechanism is that it has a smooth explanation in
terms of its own past, the data analyst is naturally led to either nonparamet-
ric formulations, orthogonal expansions, or state space modelling. Absent
knowledge of the true model, knowing the dimension is only the first step in
identification. The best model for prediction in a particular norm is unlikely
to be of the same dimension as the attractor.?

5. Conclusion

Brock and Malliaris intend their book for advanced undergraduate and
graduate students. The large number of worked out examples and the focus
on economic applications have not subtracted from the rigor in any way.
Those seeking more than an introduction to chaotic dynamics will be disap-
pointed, but the references cited here should help the interested reader
along. As a reference work, Differential Equations, Stability and Chaos in
Dynamic Economics belongs on any shelf. The authors are to be commended
for advancing the state of knowledge of economic dynamics.

2Several papers report low dimension estimates for asset price data. See Scheinkman and
LeBaron (1989) or Mayfield and Mizrach (1990) on stock prices and Frank and Stengos (1990)
for precious metals.

B This argument is developed rigorously in Mizrach (1990).
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